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Information processing of a complex system: Response behaviors specified
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By generalizing the usual lateral neural inhibition, analytic behavior of the response function of a
complex system is studied. Units of the system are assumed to be interconnected vertically by successive
bifurcations and influenced horizontally by lateral inhibitory couplings. It is found that the response
function is approximately expressed by the Weierstrass ( W) function and the asymptotic behavior is
specified by a power law. The exponent of the power law represents the fractal dimension determined by
a geometrical structure of the interconnections and the lateral inhibitory couplings.

PACS number(s): 87.22.Jb, 89.70.+c, 64.60.Ak

I. INTRODUCTION

Information processing of complex systems has been of
great importance for studying fundamental properties of
the biological neural network system [1] and other sys-
tems [2,3]. Originally, the problem of information pro-
cessing had been studied by looking for a relationship be-
tween information and entropy [4]. Among other things,
the visual pattern processing by the biological systems is
well known; the Mach bands and all similar phenomena
have been explained by the lateral neural interactions be-
tween the constituent units. Mathematical models are
based on experiments on the retina of limulus by Ratliff,
Hartline, and Miller [5], and on the psychophysical data
about human vision [6]. The models contain a few simply
interconnected layers (receptors, intermediate units, and
output units). The response properties of the models
have been studied in terms of propagator functions ex-
pressed by a Fourier series [7,8].

Generally, the main functions of neural network sys-
tems are understood by the geometrical structure due to
the connections among the units. No power laws have
been mentioned in the visual pattern processing as the
response properties. The power laws are fundamental
concepts which are related to the scaling invariant sets
providing the self-similarity [9,10]. The Weierstrass ( W)
function representing the self-similarity shows nonstand-
ard behavior. Recently, properties of the W function
have been studied by the dynamics in a complex system
[11]. Related nonstandard response behaviors have been
simulated by analog electrical circuits [12]. It is an in-
teresting problem to consider the W function by a model
circuit from an architectural point of view.

In the present paper, we propose a model of informa-
tion processing of a complex system. Specifically, we
study behavior of the response function representing a
visual pattern processing. Constituent units are intercon-
nected vertically by successive bifurcations and
influenced horizontally by lateral couplings. The
response function is approximately expressed by the
Weierstrass (W) function, in contrast to the usual
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response function expressed by a Fourier series [7,8].
The asymptotic form of the W function results in a power
law specified by the fractal dimension of the system. Pa-
rameters of the W function specify vertical connections
and horizontal inhibitory couplings.

II. COMPLEX NEURAL NETWORK SYSTEM

We consider a visual pattern processing. The system is
a complex neural network system (see Fig. 1) composed
of input (receptor) units, intermediate units, and output
units. The constituent units are interconnected vertically
by successive bifurcations with the receptor units desig-
nated by indices k£ =0,%+1,%+2,...,+x(M —1). The re-
ceptor and intermediate units are influenced horizontally
by lateral inhibitory couplings.

Suppose that the units located at site k and level O re-
ceive external stimuli X;,. Local stimuli from the top
units to the intermediate or the bottom ones with index k
are diminished by the inhibitory influences exerted by
other units. To depict the connections, we show a neural
network specified by two bifurcated fibers in Figs. 1(a)
and 1(b), respectively.

We start with a case where each unit on a site
identified by index k influences those on neighboring
sites, identified by indices kK —1 and k +1, respectively.
The indices k stand for sites distributed over points
-M—-1),—(M—-2),...,—1,0,1,...,(M—2),(M—1).
Later, we will take a limit M — «. The influences are ex-
pressed by the lateral inhibitory couplings g'”, indicating
the interactions between local input units y” and y;., lo-
cated at the /th level (I =0,1,2,...,L). The influences
by other units will be considered in Sec. III.

The lateral inhibitory couplings g'” are assumed to be
very small; they decrease with increasing level index /.
The local responses of the units with index k, ., at level
I are functions of the local stimuli x{” and the couplings
between the local responses y;'., [see Fig. 1(b)],

— (D oDy (D 0
vl =x—g Py +kil )

(I=0,1,2,...,L), (2.1
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for k=0,+1,+2,...,=(M —1), where 1>g{% >g{V
> -+ >g'Y >0 and external stimuli x\* =X,

Here we suppose that at each vertex ¢}’ there hold re-
lations between the local stimuli and the local responses,

bx;i”=¢75c”y/(<1“) (1=1), (2.2)

including the phases, where b is a factor specifying the
number of bifurcated fibers [see b =2 or b =1 in Fig.
1(c)]. The factor will be extended later to a real number b.
The real number b ( <1) represents a weight factor of
conduction in a single fiber. The relations (2.2) that we
require are expressed differently by two statements:

(i) The vertex parts @\ regulate an amplitude of the lo-
cal response y;' ~! to be equal to the amplitude of the lo-
cal stimuli x;” multiplied by b.

(ii) During the successive local stimuli-response propa-
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FIG. 1. (a) Hierarchical structure of units (receptors) from
top to bottom: input units (top), intermediate units, and output
units (bottom). The units are interconnected vertically by suc-
cessive bifurcated fibers, and the units are also influenced hor-
izontally by lateral inhibitory couplings between the units. (b)
Local stimuli x4” influenced horizontally by the inhibition cou-
plings. (c) Vertex part, expressed by a black circle, for b =2 or
b =1, representing an element regulating the phase differences
given by Egs. (2.2) and (2.3).
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gations from level O to level / or [ —1, the corresponding
phase O, on site k is proportional to a number (factor) of
bifurcations b’ or b'~'; ©, =®, b’ or ®,b' "}, where @,
are proportional coefficients parametrized by sites k.

Then, based on the two statements, we are able to associ-

ate the vertex part @} with the phase differences between

levels  and [ —1 on sites k [=0,+1,£2,...,+(M —1)]
as follows:
ikb! 1o
(H— € (2.3)
P oikb'o

when we consider a specialized case in which the site
k =0 has no phase difference and the other sites have in-
creasing phase differences designated by ®, =0|k|.

The relations (2.2) with (2.3) can be simulated by set-
ting up suitable analog electrical circuits. Note that the
variable 0 in (2.3) is a complex number and the imaginary
part of 0 denotes an energy dissipated at the vertex. The
energy dissipated is the energy loss arising from the phase
differences between the levels.

To simplify the notations of (2.3), we introduce sym-
bols z; associated with the phase factors,

leeibIG , (2.4)
and then we rewrite (2.3) as
k
z[
gl =" 2.5)
Z

Multiplying (2.1) by z}* and summing over k, we obtain

Z]Al+zl

2 Y”)(ZI)

Y(”(z,)=X(”(ZI)—2g(,”

:X”)(Zl )—Zg(ll)COSOI Y(I)(Z[ )

(1=0,1,2,...,L), (2.6)

where
0,=b'0 2.7

and the symbols Y'/(z,) and X'/(z,) are generating func-
tions defined by

<« Lkl
)
2 Z1Vk >

k=—o0

Y'W(z))=
. 2.8)
X”)(zl)= > z,kx,i” R

=—o

where we have taken the limit M — o in both ends of site
k =+(M —1). Similarly, we obtain expressions

bXPz)=y""V(z,_) (I=12,...,L) 2.9

from the expressions (2.2) with (2.5).
With the aid of (2.6) and (2.9), we obtain basic relation-
ships between the functions Y/(z,),
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1 1 -
Y(L)(z )= (L l)(z _1)
1+2g$Pcosh, b L=t
u 1 1 ©)
= — || Y"z,)
Il;ll b | 1+2g{"cos, 0
- 1 1 ©)
=b — | (zg)
,I;IOI b | 1+2g\"cos, 0
(zy=e'", 6,=ble), (2.10)
that is,
1
Ly(L), y= (0)
b Y Mz, )= FL(B;gl,b)X (zq) (2.11)
where
F (6;g,,b)= II [14+2g{"cos0,] . (2.12)

1=0

Since the inhibitory couplings g'" are very small values,

we may approximate the expression in the denominator
of b£Y'P(z; ) by

S LU
2 g\ cos6,

F.(6;8,,b)=1+2 +0(g\%Y), @13

where indices i and j stand for the levels /. The smallness
of g!? allows us to neglect the contributions following the
second term of (2.13). Note that the function F;(6;g,,b)
denotes the response of the units, constructed as shown in
Fig. 1(a). In what follows, we call F;(6;g,,b) a response
function.

ITII. LOCAL RESPONSE FUNCTION

What has been mentioned in Secs. I and II can be
modified. The other lateral influences will be considered,
besides the nearest-neighboring lateral inhibitory cou-
plings g'". In this procedure, we extend a range of the in-
hibitory lateral influences so that the units having indices
kxn with n=1,2,...,N(>1) are involved. We now
have to consider not only the lateral inhibitory couplings

g'" but the couplings g,, up to g\ (see Fig. 2). The cou-
plmgs g.P link " to y{"., and to yi” ,. An expression,
corresponding to (2.1), is given by

(I)=x}(cl)

Vi 2 g+, 3.1)

n=1
for1=0,1,2,...,L,and x{O=X,.
The same procedures that we adopted in obtaining
(2.11) now lead us to a more general expression,
1

bLY(L) =
) FN,L(B;{gnl’b)

X9z, , (3.2)
with

L
Fy(6;{g,},0)= H

1+2 2 g\cosn 8,

n=1

(3.3)

If we approximate (3.3) as follows,

T(b<l)
i %(b 2)
=9
(%(b 3
(a)
I s A T R
Xk-n Xk-2 Xk-1 Xk Xk+1 Xk+2 Xk+n

(b)

FIG. 2. (a) Skeleton diagrams: the shaded vertex parts at the
right-hand side represent the renormalized vertex part for a set
of bare vertices located at the given site. (b) Extension of range
of the inhibitory couplings [see (2.1) and (3.1)].

Fyp(6;{g,},b)=1+2 2 2 g'Pcosnb'g
n=11=0

N
= 3 fu6.L)

fol6,L)=1, f,(8, L)—zzg“’cosnb’e , (3.4)

1=0

then we note that the last expression f,(6,L) is identical
to the Weierstrass (W) function. The function f,(6,L)
will be called a local response function. It is known that
the W function is continuous everywhere, but is nowhere
differentiable [9,10]. Taking into account that the inhibi-
tory couplings g\” become smaller with an increase of the
level index [/, we introduce a parameter a, defined by

gil=gq,<1. (3.5)

By choosing suitable values of the inhibitory couplings,
we suppose that g\ can be rewritten in a form,

giP=[g!Vt=al (N2Zn=1). (3.6)

By replacing the variable 6 by b6 in the local response
function of (3.4), we obtain



fa(b6,0)=23 alcosnb' 16

:ai[f,,(e,w)—ZcosnG] ) 3.7

The last expression shows that there holds an approxi-
mate relation,

£,(0,0)~a, f, (b6, ), (3.8)

where we have neglected the contribution 2 cosn 6 arising
from [ =0 in the first expression of (3.7). Therefore, one
finally gets the following asymptotic form of f,(6, )
[14,15] from (3.8):

fa(0,00)~0 ", (3.9)
where v, is an n dependent exponent of the power law,

_ ndn (3.10

LY -10)

Here it is important to note that the fractal dimension y,
is determined by the lateral inhibitory couplings and the
successive bifurcations.

IV. BEHAVIOR OF RESPONSE FUNCTION

In this section we derive approximately an analytic
form of the response function Fy ,(6;{g,},b) [see (3.2)]
for b <1, as Lo and N— . In this case, b (<1)
may be regarded as a weight factor to the local stimuli as
mentioned before (see Fig. 3), whereas the case that b is
an integer represents the number of bifurcations.

Here we consider a response function defined by

. = 1 9. ’b
¥6;{a,},b)= lim Fy(6;1g,).b)

_ I— 1
g '=[g")=a,), 1)
where
2 3 ...
a,>a;>a;> , 4.2)
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FIG. 3. Hierarchical structure of units: lateral inhibitory
couplings, vertex part, and local stimuli for 0<b < 1.
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from (3.5) and (3.6).
By rewriting the factor cosnb'6 given in the first ex-
pression of (3.4) as Re[exp(inb'6)], we have

‘p(e;{an}yb)_l —Re i i a’iemble
2 n=11=0
=Re ¥ G,(6;a,,b) . 4.3)
n=1

Furthermore, we rewrite G,[ =G, (6;a,,b)] as

G,(6;a,,b)= 3 e *!(6;a,,b) (4.4)

I=0

with

H,,,,(B;a,,,b)=llnan+inb10 . 4.5)

Recall that we have considered the energy loss arising
from the phase differences between the levels in the sys-
tem, and we have regarded 0 as the complex variable,

0=10le’® , (4.6)

where || is an amplitude of 6 and § is a phase of 6. We
replace the summation in (4.4) by an integration, and we
evaluate the contributions by applying the saddle point
method [13,14]. In the calculation, we use the fact that
H, /(6;a,,b) have maxima value for 0<a, <1 and
0<b <1. The maxima of H, ;(6;a,,b) are obtained by
the simultaneous equations 9H,,/dl|,—; =0 and

Red’H,, ; /31| 1=1,<0. Let [, be a critical value at which

the simultaneous equations are satisfied. The equations
read

0 QDT lolnt, “n
no Ina, ’ '
and
o’H,
3 =i = —(Ina, )(Ind) . (4.8)
o

From this formula, we can confirm that
Red’H,, ; /3%, <0, for a, and b <1. Expansion of

H, , around / =/, and approximation of the sum by the
integration lead us to

w H, (8a,,6)=1/2(~1,)XIna, )Inb)
G, =1[ e ™" ol
172
Hn,, (6;a,,b)
=1e ™0 S — (4.9)
(Ina,, )(Inb)
The exponential factor in (4.9) is calculated as
H,, (6a,,b) Yoo oo
e "l =L | et 40
n0e —i(m/2)

where v, =Ina, /Inb, see (3.10).
Let us take a case that the factors a, in (3.5) are given
by



49 INFORMATION PROCESSING OF A COMPLEX SYSTEM: ...

=q(1ten) ,

a 4.11)

n

where € is a very small parameter, such that the
influences are diminished as the range of couplings in-
creases. Then the n-dependent exponent of the power
law y,, is given by

_ (1+en)ina
¥ Inb

=y(1+en) . (4.12)

With the aid of (4.11), we obtain an asymptotic form of

G,,as e—0,
lin})G,,=A,,(d)n T, (4.13)
£E—

where a factor 4, (#) is expressed by

172

27 g Ve—ri—Iny)

A,g)== | ———
a y(Inb )

1
2

(6=0e "7/ .
From (4.3) and (4.11)-(4.14), we finally obtain

172

(4.14)

2
y(Inb )?

Xe Y=g " Veos(§+ 3m)y

Limy(6; {a,},6)=1+£(y)

(4.15)
where

Sy)=3n77,

n=1

and 8 is the phase factor of 0 [see (4.6)].

(4.16)

V. QUANTITATIVE BEHAVIOR
OF RESPONSE FUNCTION

In Secs. I-IV we have studied asymptotic behaviors of
the response functions F;(6;g,,b) [see (2.13) for n =1]
and Fy ;(6;{g,},b) [see (3.4) for general n]. To get the
behaviors, we have utilized the smallness of the inhibitory
couplings g\" [n=1,2,3,..., see (3.6)]. According to
the analysis, the response function Fy; or F; obtained
approximately was identical to the Weierstrass function.
This means that the approximate response functions
show self-similar wave forms providing “irregular
behavior.”

The next problem is to make clear whether the expres-
sions in (2.12) and (2.13) give similar irregular behaviors
or not. The problem sheds light on an origin of the irreg-
ular behavior of the response functions. To this end, we
first study the response function Fy; quantitatively
without any approximation, and we compare it with the
corresponding analytic form obtained approximately.
Specifically, we investigate wave forms obtained from
Fy ; for b >1 [see (3.3)] because the case for b > 1 cannot
be studied by the saddle point method. For simplicity,
we concentrate our calculation on a function F 1,.(6)
defined below, corresponding to F, ; (6;g",b),
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L max

F,(0)= T [1+2g{"cosb’6] .
1=0

(5.1)

By introducing a parameter C by Ca;=g!", F, ;(6) be-
comes as follows:

max

F,1(0)= TJ [1+2Ca’cosb'0] (5.2)
1=0
Lmax
~1+2C 3 alcosb'd, (5.3)
1=0

where L .. stands for an upper limit of L. The question
whether the couplings are weak or strong depends on the
magnitude of C. We call a case with C =0.1 a weak cou-
pling one, whereas we regard a case with C=0.8 as a
strong coupling one.

For both cases, we obtain quantitative results for
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FIG. 4. (a) Behavior of F, ;(6) given by (5.1) or (5.2). (b)
Behavior of F ; () given by (5.3). The quantitative behaviors
are for a weak coupling case (C =0.1, a =0.8) and L,, =50,
b =2. Here 0 is expressed in radians and is taken to be a real
variable.
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FIG. 5. (a) Behavior of F, ;(6) given by (5.1) or (5.2). (b)

Behavior of F| ; () given by (5.3). The quantitative behaviors
are for a strong coupling case (C =0.8, a=0.8) and L,,,, = 100,
b=2. Here 0 is expressed in radians and is taken to be a real
variable.

F, 1 (6) from the exact expression given in (5.1) and the
corresponding approximate expression (5.3). The results
are given for two bifurcated fibers (b =2).

Figures 4(a) and 4(b) show the behaviors of (5.1) or
(5.2) and (5.3) for the weak coupling case (C=0.1,
a =0.8), respectively. The behaviors are in good agree-
ment with the results obtained. For the strong coupling
case (C =0.8, a =0.8), however, there is discrepancy be-
tween the results for (5.1) or (5.2) and (5.3), as is easily
seen in Figs. 5(a) and 5(b), respectively.

Based on numerical calculations, it is found that the ir-
regular behavior is obtained for the weak coupling case
from the exact response function (5.1) as well as (5.2). On
the other hand, the irregular behaviors are localized, and
“dominant modes” relevant to the strong coupling case
are obtained. Expressed differently, the irregular
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behaviors are confirmed to be intrinsic for the weak cou-
pling case.

V1. CONCLUDING REMARKS

In this paper, we proposed a model of information pro-
cessing of a complex system. Specifically, we studied
properties of the response function representing a visual
pattern processing. The model system was composed of a
set of units forming multiple layers. The layers were con-
structed by generalizing the usual lateral neural inhibi-
tions between the units. The connections between the
units were assumed to be interconnected vertically by
successive bifurcations and influenced horizontally by la-
teral inhibitory couplings. It was found that a local
response function was expressed approximately by the
Weierstrass function and the behavior was specified
asymptotically by a power law The exponent of the
power law represents the fractal dimension determined
by the interconnections and the lateral inhibitory cou-
plings.

The behavior was analytically obtained by applying the
saddle point method [13,14] for Eq. (4.4). In the evalua-
tion, we have used the fact that H,,(6;a,,b) have maxi-
ma for 0<a,<1 and 0<b<1, as [—>cw. This case
(b <1) represents special unbifurcated connections, and
the parameter b plays the role of a weight factor to the
local stimuli (see Fig. 3). For the case b > 1 we could not
apply the saddle point method. For this reason, with the
aid of numerical analysis (Sec. V), we studied behaviors of
the exact and the approximate expressions for F 1,.(0),
and confirmed that behaviors similar to the Weierstrass
function were obtained for a weak coupling case. On the
other hand, the response function for a strong coupling
case showed no self-similar wave form. This means that
the behaviors are not irregular. The irregular behaviors
of the weak coupling case are localized to dominant
modes relevant to the strong coupling case. Expressed
differently, in the weak coupling case the hierarchical
connections lead us to the response function character-
ized by the fractal dimension, as it should be. But in the
strong coupling case the hierarchical connections are not
relevant to the self-similar behavior of the response func-
tion.

Generally, the main functions or response behaviors of
neural networks are understood by geometrical structures
of the connections among the units. Furthermore, some
of the features can be simulated by the analog electrical
circuits [8,12]. From an architectural point of view, the
present model supports the idea that information process-
ing is relevant for settling or modifying the connections
of the neural networks. The idea may be extended to the
other functions of biological systems in which the self-
similar structures are essential features as seen in arteries,
veins, the bronchia of the lung, and so on. In the geo-
physical system [15], if we regard the data observed by
the seismometer as successive stimuli-response propaga-
tions, the present results of the response function suggest
a hint to the phenomena.
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